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Abstract

Imperfection sensitive, multi-degree-of-freedom, autonomous, structural systems under partial follower compressive
loading, which lose their stability via divergence are investigated both qualitatively and quantitatively. Attention is
focused on the global instability of that equilibrium state on the locally stable primary path, which at a certain level of
the loading becomes globally unstable. Previous work valid for potential systems under step loading is extended here to
nonpotential, imperfection sensitive systems. The serious difficulty of the lack of potential of the follower type of
loading is overcome by formulating an appropriate energy balance equation, including loss of energy. Then, similar
considerations to those for potential systems can be established, and geometric criteria can be formulated for an
“equivalent energy’’ surface. Using the mean-value theorem for integrals one can obtain approximate dynamic buckling
loads that are very good for structural design purposes. The efficiency and reliability of the proposed method is
comprehensively demonstrated through numerous examples. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The recent developments in hydro and aeromechanics have increased substantially the interest of
structural analysis in nonpotential (nonconservative), non-self-adjoint problems. The wind-induced col-
lapse of Takoma Narrows Bridge, acrospace structures under follower forces produced by jet and rocket
thrusts, problems of fluid-structure interaction, oscillations of pipes conveying fluids (Paidoussis, 1997) are
interesting examples of engineering applications. Nonpotential systems under partial follower (i.e. path
dependent) load may lose their stability either by divergence (static instability) or by flutter (dynamic in-
stability). The static critical load is obtained via a classical analysis by applying either the static or the
kinetic Ziegler’s criterion, associated with the vanishing of the fundamental circular frequency, while the
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dynamic (flutter) critical load is established only by employing the dynamic or kinetic criterion. A large
amount of pertinent work has been published in the last thirty years (Bolotin, 1963; Huseyin, 1978; Inman,
1983; Kandakis and Kounadis, 1992; Kounadis, 1977,1983,1992; Leipholz, 1970; Moran, 1970; Walker
and Schmitendorf, 1973; Ziegler, 1952).

Exact dynamic buckling loads (DBLs) of general discrete systems can be determined only through a
global (nonlinear) dynamic analysis associated with several drawbacks mentioned above. Nevertheless, one
can obtain practically “exact”” DBLs via a suitable geometric approach, employed for n-degree of freedom
(n-DOF) systems, which under statically applied load experience either a limit point instability (Fig. 1a) or
an unstable branching point bifurcating from a nonlinear prebuckling path (Fig. 1b).

In a recent work (Kounadis, 1994a), it was shown that the loss of stability of a perfect bifurcational
model of 2-DOF may occur via flutter (through a Hopf bifurcation) in regions of divergence instability;
hence, the classical static stability analysis and Ziegler’s kinetic criterion may fail to predict the actual
critical load. In this region, it was also found that these systems may be associated with a double zero
eigenvalue and exhibit one postbuckling path passing through the 1st and 2nd branching point. Very re-
cently, Kounadis and Simitses (1997), have also shown that the above perfect bifurcational nonconservative
systems may exhibit a limit cycle response, even in case they are associated with symmetrizable stiffness
matrices, contrary to existing results (Inman, 1983; Leipholz, 1970).

The major part of the existing work refers mainly to perfect bifurcational nonconservative systems (with
trivial fundamental equilibrium paths) and only a few studies deal with imperfection sensitive (or limit
point) nonconservative systems (Kounadis, 1991; Kounadis et al., 1992; Plaut 1976). It was found nu-
merically (Kounadis, 1991; Kounadis et al., 1992) that the actual critical load of imperfection sensitive
nonconservative systems is not the limit point load but a lower load obtained only with the aid of a
nonlinear dynamic analysis, in contrast with existing stability analyses (Plaut, 1976).

Despite the availability of high-speed computers and computational techniques, quite often one has to
overcome numerical difficulties due to large time solutions (Kounadis, 1991, 1999), solutions very sensitive
to initial conditions or to damping (Kounadis, 1991, 1999) or solutions associated with alternative narrow
regions of stability and instability (Kounadis, 1995). Due to these difficulties numerical methods become
time consuming, some times less reliable, and possibly erroneous, if correct solutions are missed. These
drawbacks become more acute in case of multiple-parameter investigations.

The objective of this study is to present a qualitative dynamic buckling analysis of imperfection sensitive
nonconservative systems under partial follower compressive loading, based on energy and geometrical
considerations which for 2-DOF systems may lead to approximate but very reliable for structural design
purposes DBLs without solving the highly nonlinear initial-value problem. New findings, as byproducts of
this work, will be also reported.
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Fig. 1. Nonlinear equilibrium paths (1 vs ¢; and ¢;): (a) of a typical limit point system and (b) of an unstable bifurcational system.
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2. Description of the problem

The dynamic response of a general n-DOF, n-mass, dissipative system under partial follower loading 4
associated with a nonconservativeness parameter #, is discussed below. Lagrange differential equations of
motion for this autonomous nonpotential system in terms of generalized displacements ¢; and generalized
velocities ¢;, are given by

d <6K>_6_K oF oU

dr 0q; 0q; * a_% * 0q;

—0,=0, i=1,....n (1)

where the dots denote differentiation with respect to time #; K = (1/2)a;;4:q; is the positive definite function
of the total kinetic energy with diagonal elements being functions of masses m; [i.e. a; = a;(m;), i =1,...,n]
and nondiagonal elements being functions of m; and ¢; [i.e. a; =a;(m;,q;) for i#j, i, j=1,...,n];
F = (1/2)c;¢:q; is a positive or nonnegative definite dissipation function with coefficients ¢;; = ¢;;(c;) which
could also be functions of ¢; [i.e. ¢;; = ¢;;(ci;q:) with i,j=1,...,n], where ¢; are viscous damping coeffi-
cients; U = U(q;; k;) is the positive definite function of the elastic strain energy, being a nonlinear function
of ¢;, while k; represent linear stiffness parameters (nonlinear spring components may also be included);
0; = 20,(q:,q°, n) are generalized nonpotential forces, being linear functions of 4 and nonlinear functions of
gi» q° (initial imperfections) and . For a certain value of 1, § = 1, the external forces become conservative
(potential), while for n < n, or n > 1, (boundary between flutter and divergence) adjacent equilibria do not
exist (Kounadis, 1994a). The static equilibrium and buckling equations are given by

Vi=U, —20,=0, i=1....n o
det[1;] = det([Uy) — 20, = 0

where U; = 0U /q;, while [V;;] and [U;] = [0°U/dq;0q;] are symmetric matrices, and [0,] = [00,/0q,] is a
square nonsingular asymmetric matrix for n # 5, (non-self-adjoint system). Note also that V] =

[Qij]([@,] — AI), where [Uyj] = [Qij}_l [U;] 1s an asymmetric stiffness matrix, the eigenvalues of which are the
static bifurcational buckling loads, while 7 is the identity matrix.

For a system initially (¢ = 0) unstressed under step loading we can assume the following initial condi-
tions

9:(0) =¢;, ¢:(0)=0 (3)
due to which
K|t:0 = U|r:0 =0 (4)

The follower loading 4 and the nonconservativeness parameter 1 are the main control parameters for
static and dynamic bifurcations (Kounadis, 1994a,1995; Kounadis and Simitses, 1993) as well as for the
stability of equilibria and limit cycles. Dynamic bifurcation is defined as a sudden qualitative change of
the system response (occurring at a certain value of a smoothly varying control parameter) due to which
the phase-portrait is changed to a topologically non-equivalent portrait.

3. Dynamic analysis

The lack of potential of systems under follower type loading constitutes a serious difficulty for estab-
lishing a qualitative dynamic buckling analysis similar to that holding for conservative (potential) loads
(Kounadis, 1994b, 1996b, 1999). However, one can overcome this drawback via an energy-balance equa-
tion, as shown below.
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Writing Eq. (1) for i = 1,2, ..., n, thereafter multiplying these equations by §;,¢»,...,§, respectively,
subsequently integrating them with respect to time 7, and summing up the resulting equations, we get the
following energy-balance equation (including loss of energy)

t t n
1<+2/ th’—&—U—i/ (Z@iql)dﬂ:c (5)
0 0 \i=1

where C = 0 for a system initially (+ = 0) unstressed, due to Eq. (4). Hence, Eq. (5) can also be written as
follows

t
K+2/th’+V:0 (6)
0

where

V=U-— /1/0 <ZQ1%> dr (7)
i=1

The integral of Eq. (7) is, in general, not integrable in terms of known functions. However, it can be ap-
proximated in various ways (e.g. by using the mean-value theorem for integrals). Nevertheless, the above
integral is integrable in case of 1-DOF systems (Kounadis, 1996a). Clearly, condition (6) is similar to that
valid for potential systems (Kounadis, 1994b, 1996a,b), but with }” which cannot be given in closed form,
since the integral in Eq. (7) is not integrable. Since K and F are positive definite functions, Eq. (6) implies
that throughout the motion V < 0.

Using the stability criterion of Laplace or Lagrange (boundedness of solution), valid for potential
systems, dynamic buckling is defined as that state for which an escaped motion leads either to an un-
bounded motion (overflow) or to a large response associated with a remote stable equilibrium point (acting
as attractor) if damping is included. The minimum load of this state is defined as the DBL Jpp (if damping
is included) or Ap (if damping is neglected). For 4 < App the motion is captured by the asymptotically stable
equilibria of the fundamental (nonlinear) equilibrium path. The above definitions and phenomena hold also
for nonpotential systems. Using a Taylor’s expansion (Kounadis, 1994b, 1996a), it was established that Ap
has always as lower bound the load /p associated with vanishing but nonzero damping. However, nu-
merical results show that this is not true for nonpotential systems, i.e. Jp may be greater or lower than Ap.
Nevertheless, using energy and geometrical considerations one can estimate a priori the degree of deviation
of /p from /p for both potential (Kounadis, 1996b, 1999) and nonpotential systems (Kounadis, 1998). As
will be shown below, such an energy criterion yielding Ap can be further improved leading to a very ac-
curate load Zp.

The load Jp and the corresponding saddles ¢ (on the unstable path) are obtained for given initial
conditions (3) by solving the systems of (n + 1) equations

VilginZsq)) =01 ., _
Vi(gi» 547) = 0 i=1,....n .

For nonconservative systems, the error (difference) E = /p — Ap is more conveniently determined by
considering 2-DOF systems for which one has a geometric picture of the total potential energy “surface”
V(gi, 2;¢") in the 3-D V-displacement space. For such a model at a fixed load 4 < Jp the “surface”
V(q:, 2;q") passing through the point A (defined by the initial displacements ¢, &), the stable equilibrium B
(defined by ¢7,¢5) and the saddle F (defined by ¢}, ¢3) is shown in Fig. 2a. Points B and F correspond both
to 4. At point B the total potential V' is minimum, at point A we have V = 0, while V" at the saddle F is
positive.
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(qf,q5) : saddle point

(q7.q3): stable equilibrium point 0 aogp ¢ q

(@) (b)

Fig. 2. (a) Energy surface V' (at A < Jp) for a 2-DOF system, and (b) projection of motion on 0 ¢, ¢, plane.

The intersection of V with the horizontal plane 0q, ¢, is a plane closed curve V = 0 passing always
through the starting point of motion A. Fig. 2b shows the projection of motion in the horizontal plane. If
/. < /p any motion starting from A cannot escape via the saddle F(g}, ¢7) since above the horizontal plane
V' > 0, which implies no motion (and hence no dynamic buckling). However, as 4 increases, the saddle F is
coming down approaching the horizontal plane 0¢; ¢,. At A= Ap (for which V' = 0) the “surface” V'
touches this plane at the saddle D (Fig. 3a). The new closed curve ¥ = 0 (intersection of the V-surface with
the 0¢ g>-plane) passes through the points A and D. The projection E' of the stable equilibrium (corre-
sponding to Ap) is surrounded by the plane (closed) curve V' = 0. Since motion occurs only if V' <0,
considering the variation of V(< 0) within the vertical plane passing through the equilibria E and D, we
observe that V' has minimum at E and maximum at D. A motion that starts from A (taking place in the
interior of the surface ¥ < 0) can escape through the saddle D only when the points A, E and D are located
in the same vertical plane (Kounadis, 1996b, 1999). Then, the starting point of motion A coincides with G
(Fig. 3b), a fact which implies, 2p = Ap. If this is not so (i.e. A # G), the motion starting from point A
cannot reach point D but will stop at a point of the line E'D where the “width” of the curve V = 0 (defined
by distance between the two points of intersection of ¥ = 0 with the normal on E'D) is smaller than the
“width” of this curve at point A. Then, the motion consists of back and forth oscillations between these two
points around the stable equilibrium E, which is a centre. As point A is going away from the vertical plane
(passing through the points E and D) the difference E = ip — Ap increases (Kounadis, 1996b, 1999).
However, by slightly increasing / (above /p) the closed curve ¥ = 0 becomes an open curve exhibiting an
“opening” with “width” A;A, at the corresponding new saddle D’ (Fig. 4a). If such an “opening” 4,4, is
smaller than the width (of the new curve V' =0) AA’ at point A (defining the initial amplitude of the

>

(qF,q5): stable equilibrium point

(a) (b)

Fig. 3. (a) Total potential surface V' <0 at A = Jp, and (b) its intersection with the 0¢, ¢» plane for a 2-DOF system.
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Fig. 4. Curves ¥ = 0 for (a) /p < A < ip and (b) 2 = Jp.

motion), an escaped motion through the neighbourhood of D’ (where ¥V (D') < 0) is impossible. Then, we
further increase 4 in such a way so that the “width” of the curve ¥ = 0 at A becomes equal to the “width”
of this curve at the corresponding new saddle D” (Fig. 4b). Then, an escaped motion (and hence dynamic
buckling) will occur, and the corresponding to this situation load /p is the DBL. The same approach can be
applied to nonconservative systems, using the approximation of V given by Eq. (7).

The degree of accuracy of both DBLs Jp and /p depends basically on the shape of the closed curve
V' =0, and more specifically on the ratio of the maximum “width” versus the length of the longitudinal axis
DG (Fig. 3b). As this ratio decreases the degree of accuracy of Jp and Jp increases appreciably. Moreover,
for a given value of this ratio (i.e. for a given shape of the closed curve V' = 0) the error in Jp depends on the
location of the starting point of motion A relatively to the two points E' (projection of the stable equi-
librium point in the horizontal plane) and the saddle D (Kounadis, 1996b, 1998, 1999). This is quantita-
tively measured with the aid of the ratio » = (AH)/(DG). The decrease of r implies a much smaller error in
Ab. A better estimate of )LD leads to a much more accurate Ap.

It is worth noticing that for ﬂexurally vibrating systems in their own place (planar systems) the afore-
mentioned ratio of the maximum “width” versus the length (GD) is usually very small (e.g. <0.20), a fact
that implies a good approximate DBL Jp which subsequently leads to a DBL Jp approaching /ip (i.e.
Jp — Ap). This allows us to consider /p, practically as the “exact” DBL for nonconservativeness parameter
n near 1 (potential system).

The analysis that follows is based on the last assumption regarding the shape of the closed curve V' =0
(associated with values of the last ratio smaller than 0.20).

4. Application to cantilever models

Consider as an example the cantilever model shown in Fig. 5 under (step) partial follower load at its tip.
The undeformed state is defined by the initial angles (imperfections) ¢? = ¢ (i = 1,2) and the deformed
state by the generalized coordinates ¢, = 0; and ¢; = 0; (i=1,2). As was shown above on the basis of the
total energy equation, throughout the motion (including dynamic buckling) ¥ < 0. This quantity for fixed 4
(</p) represents a “surface” in the V-displacement space (Fig. 6). The motion takes place in the interior of
this “surface”, below the horizontal plane (¥ <0). The lowest point of the surface is the stable equilibrium
point E*, while the saddle D* gives maximum in V'in a certain direction on the stable fundamental path. At
A = Jp the intersection of the potential surface V" with the horizontal plane gives a level curve V' = 0 passing
through the saddle D. The starting point of motion is located at point A of the curve ¥ = 0, whose position
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Fig. 5. Two degree-of-freedom cantilever model under partial follower step load.

Fig. 6. Perspective view of the energy surface for the 2-DOF model.

depends on the initial conditions ¢° = ¢ and ¢ = &,. The locations of these points on the static equilibrium
path and the contour plot ¥ = 0 are shown in Figs. 7 and 8, respectively.

Subsequently, one can visualize the system’s motion by the motion of a rigid ball falling under a certain
direction without friction and restricted to lie on the interior of the surface V < 0. Let F be the intersection
of the curve V' = 0 with vertical plane passing through the (stable and unstable) equilibria E and D (Fig. 8).
If the starting point of motion A coincides with point F, then the ball which suddenly falls from the point F
(with 7 = 0) inside the valley of V' < 0 passes through (or near) the equilibrium point E (with the minimum
V) and thereafter reaches the saddle D (with ¥ = 0). This is so, since the kinetic energy acquired at the
stable equilibrium point E is just the right amount to enable the ball to reach the saddle point D. Thus, the
ball follows the concrete (unique) trajectory lying on the above vertical plane from point F to the saddle D
through which it escapes (dynamic buckling). B

For n = 1 (potential system) it was shown under the above conditions that Aip = Ap (Kounadis, 1996b,
1999); this result holds also in case the starting point of motion A is close to F. As A moves away from F the
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Fig. 7. Static equilibrium path with characteristic points A, E and D.

r=(AGY(D)

0 ! >0

Fig. 8. Contour plot ¥ = 0 on the 6,-6, plane with characteristic points A, E and D.

difference between Ap and /ip increases. Under these circumstances the ball, in general, will not pass through
E (with the minimum ¥) but will follow an oscillatory motion whose projection in the horizontal plane
V' = 0 intersects the line E'D between the two portions of the curve ¥ = 0 (into which it is divided by E'D)
where E’ is the projection of E on the V' = 0 plane. The amplitudes of oscillations increase as point A goes
away from point F. If the projection of the amplitude of motion at A (on the V' = 0 plane) is less than the
opening of the curve V' = 0 at the saddle D, the ball is directed towards D but does not reach it, and then it
returns into the valley undergoing back and forth oscillations. In case the projection of the amplitude of
motion at A is equal to the opening of the curve V' =0 at D, then the ball escapes through the neigh-
bourhood of the saddle D. Two typical plots of the projection of motion on the horizontal plane 00, 0, are
shown in Fig. 9a and b, one for stable motion and one for unstable motion.

From a large number of numerical results for both quadratic and cubic conservative models it was
established that the relative error (Ap — Ap)/Ap increases as the distance » = AG/FD (Fig. 8) of the point A
from the vertical plane (divided by the distance FD) increases. Given that the projection G of the starting
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stable eqilibrim point)

8, 6,

Fig. 9. Contour plots ¥ = 0 and projection of motion for stable and unstable motions.

point of motion A on the straight line DE’, cannot be between E’ and D, the maximum error of b occurs
when point G tends to coincide with E’. However, even in this case, the error in Ap lies usually within the
bounds of the engineering accuracy (i.e. not greater than 10%).

For n # 1 (nonpotential) systems the above result was verified qualitatively, even though the curve
(4p — Zp)//p vs r was found to depend on #. This is so because the value of  defines the initial direction of
the motion from the starting point A. The corresponding load /p is an approximate DBL (associated with
vanishing but nonzero damping) which may be either greater or smaller than Ap, while for n =1 always
Ap < Ap. Hence, for nonpotential systems Ap is not a lower bound of Ap as in case of potential systems
(Kounadis, 1996b, 1999).

Then, the approximate DBLs /i were obtained for values of 5 equal to 0.6, 0.7, 0.8 and 0.9. The
computational effort required to compute Zp is much higher than for Jp. This is worthwhile for systems
that are not highly nonconservative (values of  near to 1), since for such systems Jp is considerably more
accurate than /p. For values of 5 equal to 0.6 or 0.7 this is not the case and the Jp approximation is not
better than the Ip approximation (Kounadis and Gantes, 2000). However, Jp is in most cases an upper
bound of the exact DBL and /p a lower bound, which is a very useful conclusion for practical purposes.
Furthermore, the average of Zp and /p is a very good estimate of DBL, usually better than Ap and /ip.

5. Numerical results

The theory and findings of this study will be illustrated via several analyses of the 2-DOF model shown
in Fig. 5 for which a lot of numerical results have been obtained for several values of #. This model is
governed by the following dimensionless equations of motion (Kounadis, 1994; Kounadis et al., 1992).

(1 —l—m)Ql + ézCOS(@] — 02) + égSil’l(gl — 02) + (CT +C;)61 —C;éz + V] =0

0y + 0,c0s (0, — 0,) — 07sin (0, — 05) + 50, — 50, + V3 =0 ®)

where m = mj /m, ¢; (i = 1,2) are damping coefficients and

Vi=00—& +6(0, — 81)2 + 7,01 — 81)3 —(0h—&— 0, + &) —06(0, — & — 0, +81)2 —9,(0, — &
— 0, +¢) = Asin[0) + (n — 1)6,)]

V2 = 02 — & — 01 + & + 52(92 — & — 91 + 81)2 — ])2(02 — & — 61 + 81)3 — iSiHi’]ez (10)

71 = V> = 0 are the equilibrium equations.



7496 A.N. Kounadis et al. | International Journal of Solids and Structures 38 (2001) 7487-7500

Multiplying the 1st and 2nd of Eq. (9) by 6, and 0, respectively, integrating with respect to time and
summing up the resulting equations, we obtain, for the system initially (¢ = 0) unstressed, the following
energy-balance equation

0

K+U+2/ Fdf’_z{/ sin[01+(11—1)92]91dr/+/ sinné)z-ézdf’}zo (11)
0 0

where

K =11+ m)0} + 103 + 20,0, cos (0, — 0)]
U (01 — 81)2 + %51 (01 — 81)3 +%y1<01 — 81)4 —|—%<02 — & — 91 + 81)2%52(92 — & — 91 + 81)3+

(12)
l“/2(92 —& — 0+ 81)4
=1c107 +1c5(0, — 6,)°
The equivalent expression of V in Eq. (7), due to relation (11), is given by
V= U—;L{/ Sln[01 +(1’]— 1)02]01dr’—|—/ Slni’]0202d1’,} (13)
0 0

The first of these two integrals is not integrable in terms of known functions, but the function
sin[f; + (n — 1)6,] is monotone for very small values of 6; (i = 1,2). In this case, using the mean-value
theorem for integrals, one can adopt the following approximation:

/ sin[0; + (n — 1)6,)0,d7’ = (0, — &) sin (07 + (n — 1)65"] (14)
0
Another approximation which can also be adopted using the above theorem is

/T sin[0) 4 (5 — 1)0,)0,d7’ = cos[e; + (5 — 1)es] — cos[0 + (7 — 1)05] + (1 — ) (6, — &)
x sin [0} + (n — 1)05"] (15)

where 07" = (0; +¢)/2 and 05" = (0, + ¢,)/2 are the average values of the corresponding angles.
Taking the mean value of approximations (14) and (15), the expression of V' in Eq. (13) becomes

VU —%{(91 —¢)sin [0 + (n — 1)03'] + cos[e; + (n — 1)&s] — cos[0) + (n — 1)05] + (1 —n)

. . 4 2
X (0, — &) sin [07" + (n — 1)03'] — p [cosnl, — cosnsz]} (16)

Using this expression for the case of vanishing but nonzero damping (c, ; — 0fori,j=1 2) we obtain the
approximate values Ap, 0 and 0 without solving the nonlinear initial-value problem. For this model it
was found that for given # the ratio (Ap — Ap)/Ap representing the relative error of Ap is a nonlinear
function of the length ratio r = AG/FD (see Fig. 8). The error estimates have been obtained by comparison
to numerical results making use of the Runge-Kutta scheme. From Fig. 10 one can see the relation
E = (4p — /p)//p Vs r corresponding to n = 0.60, 0.70, 0.80 and 0.90. Clearly, as r increases the error £ (%)
also increases. Figs. 11-14 show the error distribution £ (76) of both Jp and /p. It is clear that as 5 decreases
the difference of Ap and /p increases. For < 0.50 the proposed procedure becomes inapplicable because
the model loses its stability by flutter instead of divergence (Kounadis et al., 1992).

It is worth noticing that these plots are based on a 2-DOF model with uniform mass distribution.
However, even in the extreme case that one of the masses of the model is 100 times larger than the other,
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Fig. 10. Correlation between r and the error of the approximate buckling load.
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Fig. 12. Error distributions of Jp and Jp for n = 0.80.
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Fig. 14. Error distributions of Zp and p for 7 = 0.60.

this effect on the DBL is less than 1.4%. Hence, Ap is practically independent of the mass distribution. This

phenomenon was originally observed in imperfection sensitive conservative systems (Kounadis, 1999).
The results of Figs. 10-14 refer to a model with 6, = —2.50, 6, = —0.75, y, =y, =0, m =2, ¢; — 0,

¢y — 0, ¢ = 0.05. For the case 1 = 0.8 the numerical results are also presented in tabular form in Table 1.
The appreciably increased accuracy of the improved approximation Jp with respect to the initial ap-

proximation Ap is evident.

Table 1

Numerical values of ratio r and approximate dynamic loads Ap and p and their accuracy compared to exact load Ap for a system with
n =038, 0, =-2.50,0,=-0757,=9,=0,m=2,¢, — 0, c; — 0, ¢ = 0.05 and various values of ¢,

& ).D AD r ((/LD — )D)/)»D)loo (0 ()) }-D ((AD — )D)/ZD)IOO (0 ())
—0.045 0.419960 0.394309 0.062016 6.108 0.419623 0.080

—0.04 0.388766 0.380425 0.054705 2.146 0.394369 —1.441

—0.035 0.372629 0.367877 0.046423 1.275 0.376161 —0.948

—0.03 0.359333 0.356516 0.038129 0.784 0.361721 —0.665

—0.02 0.337861 0.336752 0.02328 0.328 0.338836 —0.289

—0.01 0.320660 0.320072 0.011273 0.183 0.320885 —0.070

0 0.306215 0.305707 0.001631 0.166 0.305998 —0.071

0.015 0.288062 0.287374 0.009686 0.239 0.287618 —0.0154
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It should be noted that the proposed approach can be extended to n-DOF systems. For such systems, for
fixed 4, V represents a “hypersurface” in the (n + 1)-dimensional space spanned by Vand ¢, (i = 1,...,n).
A series of hypersurfaces correspond to different, constant values of 1. For 2-DOF systems these hyper-
surfaces are geometric surfaces, which are much easier to visualize. For this reason, 2-DOF systems have
been selected to demonstrate this concept. However, the analytical and numerical calculations associated
with this approach can be easily extended to complex systems with more DOF. Actually, for such systems
the results are not only going to be more useful due to the increased difficulty of obtaining numerical
solutions, but are also expected to be more accurate due to the stricter restrictions imposed upon the
motion by the higher number of DOF.

6. Conclusions
The most important conclusions are the following:

1. The limit point load obtained via a static stability analysis does not represent the actual critical load of
imperfection sensitive systems. This can be determined by using a nonlinear dynamic analysis which yields
always a lower critical load than the limit point load. The difference between the static and dynamic critical
load reveals the dynamic character of the follower loading.

2. Despite the lack of a potential for systems under follower loading, useful criteria for dynamic buckling
based on an energy-balance equation similar to those valid for potential (conservative) systems were es-
tablished.

3. These energy-criteria together with geometrical considerations of the motion channel allow us to
predict a priori for a 2-DOF nondissipative model the accuracy of the DBL Ap. More specifically, the
smaller the distance of the starting point of motion from the straight line connecting the stable and unstable
equilibria corresponding to Ap, the more accurate ip. Contrary to potential systems where /p is always a
lower bound of the exact DBL /p, for nonpotential systems Ap may be greater or smaller than Ap.

4. Further energy considerations allow us to establish another approximate load /p of the exact DBL,
very good for 5 near 1. For the cases examined, Ap is practically a lower bound of the exact DBL and /p an
upper bound, which is a very useful conclusion for practical purposes. The average of Ap and /p can also be
used as a DBL.

5. The proposed methodology can be extended to N-DOF nonpotential systems.
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